The inner magnetosphere ion composition and local time distribution over a solar cycle

Academic Article

Abstract

  • AbstractUsing the Cluster/Composition and Distribution Function (CODIF) analyzer data set from 2001 to 2013, a full solar cycle, we determine the ion distributions for H+, He+, and O+ in the inner magnetosphere (L < 12) over the energy range 40 eV to 40 keV as a function magnetic local time, solar EUV (F10.7), and geomagnetic activity (Kp). Concentrating on L = 6–7 for comparison with previous studies at geosynchronous orbit, we determine both the average flux at 90° pitch angle and the pitch angle anisotropy as a function of energy and magnetic local time. We clearly see the minimum in the H+ spectrum that results from the competition between eastward and westward drifts. The feature is weaker in O+ and He+, leading to higher O+/H+ and He+/H+ ratios in the affected region, and also to a higher pitch angle anisotropy, both features expected from the long‐term effects of charge exchange. We also determine how the nightside L = 6–7 densities and temperatures vary with geomagnetic activity (Kp) and solar EUV (F10.7). Consistent with other studies, we find that the O+ density and relative abundance increase significantly with both Kp and F10.7. He+ density increases with F10.7, but not significantly with Kp. The temperatures of all species decrease with increasing F10.7. The O+ and He+ densities increase from L = 12 to L ~ 3–4, both absolutely and relative to H+, and then drop off sharply. The results give a comprehensive view of the inner magnetosphere using a contiguous long‐term data set that supports much of the earlier work from GEOS, ISEE, Active Magnetospheric Particle Tracer Explorers, and Polar from previous solar cycles.
  • Status

    Publication Date

  • March 2016
  • Published In

    Digital Object Identifier (doi)

    Start Page

  • 2009
  • End Page

  • 2032
  • Volume

  • 121
  • Issue

  • 3