Positions

Overview

  • Description of Current Research :
    Either harmful or beneficial bacterium-host interactions can trigger similar host-responses that respectively result in eradication or tolerance of the bacterium. How bacteria can appropriately communicate to a host its benign naturre and how hosts can discriminate between harmful and beneficial bacteria is poorly understood. Using as a model system they symbiosis of the bioluminescent bacterium, Vibrio fischeri, with its animal host, the squid Euprymna scolopes, my research seeks to elucidate how bacteria initiate and maintain long-term associations and how hosts recognize and respond to their desired symbiotic partner.
    Symbiotic colonization is a dynamic process that requires adaptation by both partners. The host is an active participant during initiation of the symbiotic association, collecting bacteria from the surrounding seawater in mucus it secretes from paired epithelial appendages attached to the light organ and concentrating them near the entrance to the organ that eventually cultures the bacterial symbiont. Although various bacterial species associate with the mucus, only the correct symbiont, V. fischeri, is able to successfully enter into symbiosis by overcoming host-imposed checkpoints. Studies indicate that during the specific cooperative association between V. fisheri and its squid host, the baacterial two-component regulator GacA, coordinately regulates the expression of bacterial traits that alllow it to initiate a benign infection of the squid's light-emitting organ. GacA mutants of V. fischeri are less effective at initiating infection and are also impaired at forming tight aggregates during infection. When its light organ is colonized by V. fischeri, the squid host adapts to this association and, in response to bacterial signals, undergoes a program of changes that leads to the normal develoment of the light organ. One of the most striking changes is apoptosis in and regression of the appendages over a four-day period. GacA mutants that successfully colonize squid light organs do not trigger normal apoptosis during regression of these appendages, implying that delivery of bacterial signals to the squid host is GacA-controlled. Furthermore, GacA mutants fail to trigger cessation of mucus shedding, a colonization response that normally limits further bacterial interaction.

    My current research focus will use the GacA mutant as a basis for identifying and characterization colonization traits. These studies will provide insight into bacteria-derived signals that allow hosts to respond appropriately to beneficial organisms, thus allowing association, without compromising the ability of immune responses to protect the host from pathogenic infection. We are currently utilizing a recently generated DNA microarray of the entire genome of V. fischeri, and will also combine this genomic approach with random mutagenesis screens to discover previously uncharacterized genes and traits that contribute to animal tissue colonization.
  • Teaching Activities

  • Doctoral Research Taught course
  • Doctoral Research Taught course
  • Genetics Prokaryotic Microbes Taught course
  • Genetics Prokaryotic Microbes Taught course
  • Microbes in Human Disease Taught course
  • Student Research Experience Taught course
  • Doctoral Research Taught course 2024
  • Microbes in Human Disease Taught course 2024
  • Microbes in Human Disease Taught course 2024
  • Microbes in Human Disease Taught course 2024
  • Microbes in Human Disease Taught course 2024
  • Undergrad Teaching Experience Taught course 2024
  • Contemp Top Molec/Cell/Biomed Taught course 2023
  • Doctoral Thesis Taught course 2023
  • Genetics Prokaryotic Microbes Taught course 2023
  • Genetics Prokaryotic Microbes Taught course 2023
  • Case Studies in Microbiology Taught course 2022
  • Contemp Top Molec/Cell/Biomed Taught course 2022
  • Doctoral Thesis Taught course 2022
  • Molecular Biol Research Methds Taught course 2022
  • Molecular Biol Research Methds Taught course 2022
  • Contemp Top Molec/Cell/Biomed Taught course 2022
  • Doctoral Thesis Taught course 2022
  • Genetics Prokaryotic Microbes Taught course 2022
  • Genetics Prokaryotic Microbes Taught course 2022
  • Seminar Taught course 2022
  • Advanced Research Experience Taught course 2021
  • Contemp Top Molec/Cell/Biomed Taught course 2021
  • Doctoral Thesis Taught course 2021
  • Molecular Biol Research Methds Taught course 2021
  • Molecular Biol Research Methds Taught course 2021
  • Contemp Top Molec/Cell/Biomed Taught course 2021
  • Doctoral Thesis Taught course 2021
  • Genetics Prokaryotic Microbes Taught course 2021
  • Genetics Prokaryotic Microbes Taught course 2021
  • Rsrch Exp/MCBS Taught course 2021
  • Contemp Top Molec/Cell/Biomed Taught course 2020
  • Doctoral Thesis Taught course 2020
  • Molecular Biol Research Methds Taught course 2020
  • Molecular Biol Research Methds Taught course 2020
  • Rsrch Exp/MCBS Taught course 2020
  • Contemp Top Molec/Cell/Biomed Taught course 2020
  • Doctoral Thesis Taught course 2020
  • Genetics Prokaryotic Microbes Taught course 2020
  • Genetics Prokaryotic Microbes Taught course 2020
  • Contemp Top Molec/Cell/Biomed Taught course 2019
  • Doctoral Thesis Taught course 2019
  • Molecular Biol Research Methds Taught course 2019
  • MolecularBiolResrch Methds\Hon Taught course 2019
  • Contemp Top Molec/Cell/Biomed Taught course 2019
  • Contemp Top Molec/Cell/Biomed Taught course 2018
  • Invest in Molecular & Cell Bio Taught course 2018
  • Contemp Top Molec/Cell/Biomed Taught course 2018
  • Genetics Prokaryotic Microbes Taught course 2018
  • Investigations Biomedical Sci Taught course 2018
  • Rsrch Exp/MCBS Taught course 2018
  • Seminar Taught course 2018
  • Contemp Top Molec/Cell/Biomed Taught course 2017
  • Seminar Taught course 2017
  • Doctoral Research Taught course 2017
  • Genetics Prokaryotic Microbes Taught course 2017
  • Seminar Taught course 2017
  • Undergrad Teaching Experience Taught course 2017
  • Doctoral Research Taught course 2016
  • Rsrch Exp/MCBS Taught course 2016
  • Seminar Taught course 2016
  • Doctoral Research Taught course 2016
  • Genetics Prokaryotic Microbes Taught course 2016
  • Senior Honors Thesis Taught course 2016
  • Top/Host Microbe Interaction Taught course 2016
  • Doctoral Research Taught course 2015
  • General Microbiology Taught course 2015
  • Senior Honors Thesis Taught course 2015
  • Top/Host Microbe Interaction Taught course 2015
  • Undergrad Teaching Experience Taught course 2015
  • Doctoral Research Taught course 2015
  • Genetics Prokaryotic Microbes Taught course 2015
  • Honors Senior Thesis Taught course 2015
  • Top/Host Microbe Interaction Taught course 2015
  • Undergrad Teaching Experience Taught course 2015
  • Adv Rsrch Exp/MCBS Taught course 2014
  • Doctoral Research Taught course 2014
  • General Microbiology Taught course 2014
  • Investigations Taught course 2014
  • Top/Host Microbe Interaction Taught course 2014
  • Undergrad Teaching Experience Taught course 2014
  • Genetics Prokaryotic Microbes Taught course 2014
  • Top/Host Microbe Interaction Taught course 2014
  • Undergrad Teaching Experience Taught course 2014
  • Education And Training

  • B.A. General Biology, University of California - San Diego
  • Ph.D. Molecular and Cellular Biology, Oregon State University
  • Full Name

  • Cheryl Whistler