Rapid Consumption of Low Concentrations of Methyl Bromide by Soil Bacteria

Academic Article

Abstract

  • A dynamic dilution system for producing low mixing ratios of methyl bromide (MeBr) and a sensitive analytical technique were used to study the uptake of MeBr by various soils. MeBr was removed within minutes from vials incubated with soils and ~10 parts per billion by volume of MeBr. Killed controls did not consume MeBr, and a mixture of the broad-spectrum antibiotics chloramphenicol and tetracycline inhibited MeBr uptake by 98%, indicating that all of the uptake of MeBr was biological and by bacteria. Temperature optima for MeBr uptake suggested a biological sink, yet soil moisture and temperature optima varied for different soils, implying that MeBr consumption activity by soil bacteria is diverse. The eucaryotic antibiotic cycloheximide had no effect on MeBr uptake, indicating that soil fungi were not involved in MeBr removal. MeBr consumption did not occur anaerobically. A dynamic flowthrough vial system was used to incubate soils at MeBr mixing ratios as low as those found in the remote atmosphere (5 to 15 parts per trillion by volume [pptv]). Soils consumed MeBr at all mixing ratios tested. Temperate forest and grassy lawn soils consumed MeBr most rapidly (rate constant [k] = 0.5 min-1), yet sandy temperate, boreal, and tropical forest soils also readily consumed MeBr. Amendments of CH4 up to 5% had no effect on MeBr uptake even at CH4:MeBr ratios of 10(7), and depth profiles of MeBr and CH4 consumption exhibited very different vertical rate optima, suggesting that methanotrophic bacteria, like those presently in culture, do not utilize MeBr when it is at atmospheric mixing ratios. Data acquired with gas flux chambers in the field demonstrated the very rapid in situ consumption of MeBr by soils. Uptake of MeBr at mixing ratios found in the remote atmosphere occurs via aerobic bacterial activity, displays first-order kinetics at mixing ratios from 5 pptv to ~1 part per million per volume, and is rapid enough to account for 25% of the global annual loss of atmospheric MeBr.
  • Authors

  • Hines, ME
  • Crill, PM
  • Varner, Ruth
  • Talbot, RW
  • Shorter, JH
  • Kolb, CE
  • Harriss, RC
  • Status

    Publication Date

  • May 1, 1998
  • Has Subject Area

    Start Page

  • 1864
  • End Page

  • 1870
  • Volume

  • 64
  • Issue

  • 5