Tailor Welded Blanks (TWBs) offer several notable benefits compared to traditional sheet metal parts including decreased part weight, reduced manufacturing costs, increased environmental friendliness, and improved dimensional consistency. In order to take advantage of these benefits, however, designers must overcome formability concerns related to stamping TWBs and be able to accurately predict unique characteristics related to the forming of this blank type. In this research, an analytical model using a 2D cross-sectional approach was devised and implemented to predict the weld line movement and forming height for a uniform binder force TWB application. The inputs into the analytical model are the desired strain at the weld line location, the geometry of the 2D cross-section, material properties, and the frictional condition. From this information, the model predicts the stress and strain at several key locations on the 2D cross-section as well as the movement of the material in the binder area and in the formed walls.