As components with proportional feature and tooling sizes are miniaturized, strain gradients through the cross-section increase. This causes strain gradient hardening as the density of geometrically necessary dislocations increases. This will lead to higher required forces in the process than expected. In this paper, an analytical model to predict the dislocation density increases, and thus strain gradient hardening, during microbending is presented. These results match previous research in terms of the feature size where modest and significant strain gradient hardening was observed.