The ability to organize variable sensory signals into discrete categories is a fundamental process in human cognition thought to underlie many real-world learning problems. Decades of research suggests that two learning systems may support category learning and that categories with different distributional structures (rule-based, information-integration) optimally rely on different learning systems. However, it remains unclear how the same individual learns these different categories and whether the behaviors that support learning success are common or distinct across different categories. In two experiments, we investigate learning and develop a taxonomy of learning behaviors to investigate which behaviors are stable or flexible as the same individual learns rule-based and information-integration categories and which behaviors are common or distinct to learning success for these different types of categories. We found that some learning behaviors are stable in an individual across category learning tasks (learning success, strategy consistency), while others are flexibly task-modulated (learning speed, strategy, stability). Further, success in rule-based and information-integration category learning was supported by both common (faster learning speeds, higher working memory ability) and distinct factors (learning strategies, strategy consistency). Overall, these results demonstrate that even with highly similar categories and identical training tasks, individuals dynamically adjust some behaviors to fit the task and success in learning different kinds of categories is supported by both common and distinct factors. These results illustrate a need for theoretical perspectives of category learning to include nuances of behavior at the level of an individual learner.