The Sun is now emerging from a deep and protracted solar minimum, when the power, pressure, flux, and magnetic flux of solar wind were at their lowest levels [McComas et al., 2008; Schwadron and McComas, 2008;Connick et al., 2011]. Because of an anomalously weak heliospheric magnetic field and low solar wind pressure, galactic cosmic rays (GCRs)—protons, electrons, and ionized nuclei of elements accelerated to high energies—achieved the highest fluxes observed in the space age (Figure 1) [Mewaldt et al., 2010]. Related observations have shown remarkably rapid changes in the fluxes of energetic neutral atoms (ENAs) used by NASA's Interstellar Boundary Explorer mission to image the global heliosphere surrounding the solar system [McComas et al., 2010]. These changes in ENAs are caused by decreasing solar wind pressure. Does the recent anomalous deep solar minimum hint at larger changes in store? And how do changing GCR fluxes and conditions on the Sun influence Earth's ecosphere? Given the fact that GCR radiation can damage living tissue, causing cellular mutagenesis, the changing state of the Sun may have serious implications for life on the planet.