Optimal soil moisture estimation may be characterized by intercomparisons among remotely sensed measurements, ground‐based measurements, and land surface models. In this study, we compared soil moisture from Advanced Microwave Scanning Radiometer E (AMSR‐E), ground‐based measurements, and a Soil‐Vegetation‐Atmosphere Transfer (SVAT) model for the Soil Moisture Experiments in 2003 (SMEX03) Little River region, Georgia. The Common Land Model (CLM) reasonably replicated soil moisture patterns in dry down and wetting after rainfall though it had modest wet biases (0.001–0.054 m3/m3) as compared to AMSR‐E and ground data. While the AMSR‐E average soil moisture agreed well with the other data sources, it had extremely low temporal variability, especially during the growing season from May to October. The comparison results showed that highest mean absolute error (MAE) and root mean squared error (RMSE) were 0.054 and 0.059 m3/m3 for short and long periods, respectively. Even if CLM and AMSR‐E had complementary strengths, low MAE (0.018–0.054 m3/m3) and RMSE (0.023–0.059 m3/m3) soil moisture errors for CLM and soil moisture low biases (0.003–0.031 m3/m3) for AMSR‐E, care should be taken prior to employing AMSR‐E retrieved soil moisture products directly for hydrological application due to its failure to replicate temporal variability. AMSR‐E error characteristics identified in this study should be used to guide enhancement of retrieval algorithms and improve satellite observations for hydrological sciences.