Compensatory effect of the heat increment of feeding on thermoregulation costs of white-tailed deer fawns in winter

Academic Article


  • For northern white-tailed deer (Odocoileus virginianus) fawns, the energetic cost of thermoregulation (HcE) during severe winters can result in substantial catabolism of body-tissue reserves. The heat increment of feeding (HiE) has the potential to offset thermoregulatory energy expenditure that would otherwise require the catabolism of these reserves. During winters 1996 and 1997, we conducted 18 fasting and 18 on-feed heat-production trials using indirect respiration calorimetry in a metabolic chamber. Nonlinear regression analysis was used to estimate the lower critical temperatures (Tlc) and determine the fasting metabolic rate (FMR) and resting metabolic rate (RMR). Resulting models were used to calculate HiE, HcE, and percent substitution of HiE for HcE. For fawns fed a natural browse diet, estimated FMR and RMR were 352 and 490 kJ·kg body mass (BM)-0.75·d-1, respectively; this 40% increase in thermoneutral heat production reduced Tlc from -0.8 to -11.2°C between the fasted and fed states, respectively, and reduced HcE by 59% for fed fawns. For fawns fed a concentrate diet, estimated FMR and RMR were 377 and 573 kJ·kg BM-0.75·d-1, respectively. Level of browse intake had a significant effect on RMR andTlc. RMR was 12% higher for fawns on a high versus a low level of intake, and estimated Tlc was -15.6 and -5.8°C, respectively. Our data indicate that the energetic cost of thermoregulation is probably a minor portion of the energy budget of a healthy fawn consuming natural forage.
  • Authors

  • Jensen, PG
  • Pekins, Peter
  • Holter, JB
  • Status

    Publication Date

  • September 1999
  • Has Subject Area

    Published In

    Digital Object Identifier (doi)

    Start Page

  • 1474
  • End Page

  • 1485
  • Volume

  • 77
  • Issue

  • 9