Abstract
Measurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016–2018, and correspond to an integrated luminosity of 138 fb−1. Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant $$ \textrm{t}\overline{\textrm{t}} $$
t
t
¯
background. A cross section of $$ 79.2\pm 0.9{\left(\textrm{stat}\right)}_{-8.0}^{+7.7}\left(\textrm{syst}\right)\pm 1.2\left(\textrm{lumi}\right) $$
79.2
±
0.9
stat
−
8.0
+
7.7
syst
±
1.2
lumi
pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics.