This paper compares two approaches to predict the overall mechanical properties of solids with irregularly shaped pores. The first approach involves direct finite element simulations of representative volume elements containing arrangements of irregularly shaped pores subjected to periodic boundary conditions. The second approach utilizes numerical results for individual defect shapes in a micromechanical scheme. Several realizations of parallel and randomly oriented distributions of defects are considered. It is determined that the Mori-Tanaka micromechanical scheme provides good correlation with the full field finite element simulations.