Electronic Navigational Chart (ENC) data are essential for safe maritime navigation and have multiple other uses in a wide range of enterprises. Charts are relied upon to be as accurate and as up-to-date as possible by the vessels moving vast amounts of products to global ports each year. However, cartographic generalization processes for updating and creating ENCs are complex and time-consuming. Increasing the efficiency of the chart production workflow has been long sought by the nautical charting community. Toward this effort, approaches must consider intended scale, data quality, various chart features, and perform consistently in different scenarios. Additionally, supporting open-science initiatives through standardized open-source workflows will increase marine data accessibility for other disciplines. Therefore, this paper reviews, improves, and integrates available open-source software, and develops new custom generalization tools, for the semi-automated processing of land and hydrographic features per nautical charting specifications. The robustness of this approach is demonstrated in two areas of very different geographic configurations and the effectiveness for use in nautical charting was confirmed by winning the first prize in an international competition. The presented rapid data processing combined with the ENC portrayal of results as a web-service provides new opportunities for applications such as the development of base-maps for marine spatial data infrastructures.