Analysis of Bose-Einstein condensation times for self-interacting scalar dark matter

Academic Article

Abstract

  • We investigate the condensation time of self-interacting axion-like particles in a gravitational well, extending the prior work [arXiv:2007.07438] which showed that the Wigner formalism is a good analytic approach to describe a condensing scalar field. In the present work, we use this formalism to affirm that $\phi^4$ self-interactions will take longer than necessary to support the time scales associated with structure formation, making gravity a necessary part of the process to bring axion dark matter into a solitonic form. Here we show that when the axions' virial velocity is taken into account, the time scale associated with self-interactions will scale as $\lambda^2$. This is consistent with recent numerical estimates, and it confirms that the Wigner formalism described in prior work~\cite{Relax} is a helpful analytic framework to check computational work for potential numerical artifacts.
  • Authors

  • Kirkpatrick, Kay
  • Mirasola, Anthony E
  • Prescod-Weinstein, Chanda
  • Publication Date

  • October 17, 2021
  • Published In

  • Physical Review D  Journal
  • Keywords

  • astro-ph.CO
  • hep-ph
  • Digital Object Identifier (doi)

    Start Page

  • 043512
  • Volume

  • 106
  • Issue

  • 4