Fusion categories and homotopy theory

Academic Article


  • We apply the yoga of classical homotopy theory to classification problems of G-extensions of fusion and braided fusion categories, where G is a finite group. Namely, we reduce such problems to classification (up to homotopy) of maps from BG to classifiying spaces of certain higher groupoids. In particular, to every fusion category C we attach the 3-groupoid BrPic(C) of invertible C-bimodule categories, called the Brauer-Picard groupoid of C, such that equivalence classes of G-extensions of C are in bijection with homotopy classes of maps from BG to the classifying space of BrPic(C). This gives rise to an explicit description of both the obstructions to existence of extensions and the data parametrizing them; we work these out both topologically and algebraically. One of the central results of the paper is that the 2-truncation of BrPic(C) is canonically the 2-groupoid of braided autoequivalences of the Drinfeld center Z(C) of C. In particular, this implies that the Brauer-Picard group BrPic(C) (i.e., the group of equivalence classes of invertible C-bimodule categories) is naturally isomorphic to the group of braided autoequivalences of Z(C). Thus, if C=Vec(A), where A is a finite abelian group, then BrPic(C) is the orthogonal group O(A+A^*). This allows one to obtain a rather explicit classification of extensions in this case; in particular, in the case G=Z/2, we rederive (without computations) the classical result of Tambara and Yamagami. Moreover, we explicitly describe the category of all (Vec(A1),Vec(A2))-bimodule categories (not necessarily invertible ones) by showing that it is equivalent to the hyperbolic part of the category of Lagrangian correspondences.
  • Authors

  • Etingof, Pavel
  • Nikshych, Dmitri
  • Ostrik, Viktor
  • Status

    Publication Date

  • 2010
  • Published In

  • Quantum Topology  Journal
  • Keywords

  • math.AT
  • math.QA
  • Digital Object Identifier (doi)

    Start Page

  • 209
  • End Page

  • 273