A reusable sensor architecture, through the combination of self-assembled monolayers and cyclodextrin supramolecular interactions, is demonstrated for class recognition of hydrophobic analytes demonstrated with trans-resveratrol. The reloadable sensor is based on reversible immobilization of α-cyclodextrin on polyethylene glycol surface. α-cyclodextrins complexes with polyethylene glycols and causes the polymer chains to change their surface configuration. The reproducibility and stability of the sur-face, in the detection of nanomolar concentrations of trans-resveratrol, can be demonstrated by electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and Attenuated total reflectance-Fourier transform infrared spectroscopy. We propose that during sensor operation, α-cyclodextrin decouples from the poly-ethylene glycol surface to complex with trans-resveratrol in solution, and after use, the surface regeneration is conducted with a simple α-cyclodextrin soak. To test the nonspecific response, the sensor was also tested with trans-resveratrol spiked human urine.