On the completeness of root vectors generated by systems of coupled hyperbolic equations

Academic Article

Abstract

  • The paper is the second in a set of two papers, which are devoted to a unified approach to the problem of completeness of the generalized eigenvectors (the root vectors) for a specific class of linear non‐selfadjoint unbounded matrix differential operators. The list of the problems for which such operators are the dynamics generators includes the following: (a) initial boundary‐value problem (IBVP) for a non‐homogeneous string with both distributed and boundary damping; (b) IBVP for small vibrations of an ideal filament with a one‐parameter family of dissipative boundary conditions at one end and with a heavy load at the other end; this filament problem is treated for two cases of the boundary parameter: non‐singular and singular; (c) IBVP for a three‐dimensional damped wave equation with spherically symmetric coefficients and both distributed and boundary damping; (d) IBVP for a system of two coupled hyperbolic equations constituting a Timoshenko beam model with variable coefficients and boundary damping; (e) IBVP for a coupled Euler‐Bernoulli and Timoshenko beam model with boundary energy dissipation (the model known in engineering literature as bending‐torsion vibration model); (f) IBVP for two coupled Timoshenko beams model, which is currently accepted as an appropriate model describing vibrational behavior of a longer double‐walled carbon nanotube. Problems have been discussed in the first paper of the aforementioned set. Problems are discussed in the present paper.
  • Status

    Publication Date

  • September 2014
  • Has Subject Area

    Published In

    Keywords

  • Matrix differential operator
  • nuclear perturbation
  • root vectors
  • spectrum
  • Digital Object Identifier (doi)

    Start Page

  • 1497
  • End Page

  • 1523
  • Volume

  • 287
  • Issue

  • 13