The linear stability of two-layer flow over an infinite elastic substraw is considered. The problem is motivated by coating flow in a printing press. The flow is assumed to be inviscid and irrotational. Surface tension between the fluid layers is included, but gravity is neglected. The results show two unstable modes: one mode associated with the interface between the elastic layer and the fluid (mode 1), and the other concentrated on the interface between the two fluids (mode 2). The behavior of the unstable modes is examined while varying the elastic parameters, and it is found that mode 1 can be made stable, but mode 2 remains unstable at small wavenumber, similar to the classic Kelvin—Helmholtz mode.