SOlar Neutron TRACking (SONTRAC) Concept

Conference Paper


  • The detection of fast neutrons has important applications in a variety of fields including geospace, solar, and planetary physics. Though neutrons are ubiquitous products of nuclear interactions, they are challenging to detect and the measurements typically suffer large backgrounds. Highenergy neutrons (> 50 MeV) pose even greater challenges because the traditional double scatter technique based on a time-of-flight (ToF) is limited by the finite flight path and active detector sizes limited by small satellite platforms. At these high energies, the proton recoil is likely to escape the detector volume, degrading the energy and angular resolution. Scintillator-based technologies have a proven record for detecting and measuring fast neutrons. They have high stopping power, good energy resolution, and fast timing properties. By dramatically increasing the segmentation of scintillator arrays (down to hundreds of sub-mm fibers) proton-tracking can be achieved, effectively supplanting the ToF measurement, thereby eliminating the need for widely separated detectors, thereby greatly increasing the detection efficiency. It reduces the scale size of the detector from that necessary for time of flight to the proton range in dense matter. Modern readout devices such as silicon photomultipliers offer an ideal alternative to photomultiplier tubes given their inherently compact size, fast response, and low operating voltages. The Solar Neutron TRACking (SONTRAC) Concept, based on scintillating-fiber bundles, would provide high-resolution imaging of fast neutrons at energies where the bulk of solar and magnetospheric neutrons resides. Recent development and performance of the SONTRAC Concept are presented.
  • Authors

  • de Nolfo, Georgia
  • Bruno, A
  • Dumontheir, J
  • Liceaga-Indart, I
  • Legere, J
  • Messner, Richard
  • Mitchell, JG
  • Ryan, JM
  • Suarez, G
  • Tatoli, T
  • Presented At Event