Direct solar flare neutrons are a valuable diagnostic of high-energy ion acceleration in these events, and COMPTEL improves over all previous cosmic neutron detectors in its capacity for neutron energy measurement. Previous studies of COMPTEL neutron data have worked with an incomplete model of the instrumental response, applying energy-by-energy detection efficiencies. Here we employ statistical regularisation techniques with the full (Monte Carlo simulation derived) response matrix to produce improved estimates of neutron numbers and energy distribution. These techniques are applied to data from the well-observed 15 June 1991 flare. Our improved treatment of the instrumental response results in a reduction of 73% in total neutron numbers, compared with previously deduced values. Implications for the picture of primary ion acceleration in this flare are briefly discussed.