We present a numerical algorithm aimed at identifying ion diffusion regions
(IDRs) in the geomagnetic tail, and test its applicability. We use 5 criteria
applied in three stages. (i) Correlated reversals (within 90 s) of Vx and Bz
(at least 2 nT about zero; GSM coordinates); (ii) Detection of Hall electric
and magnetic field signatures; and (iii) strong (>10 mV/m) electric fields.
While no criterion alone is necessary and sufficient, the approach does provide
a robust, if conservative, list of IDRs. We use data from the Magnetospheric
Multiscale Mission (MMS) spacecraft during a 5-month period (May 1 to September
30, 2017) of near-tail orbits during the declining phase of the solar cycle. We
find 148 events satisfying step 1, 37 satisfying steps 1 and 2, and 17
satisfying all three, of which 12 are confirmed as IDRs. All IDRs were within
the X-range [-24, -15] RE mainly on the dusk sector and the majority occurred
during traversals of a tailward-moving X-line. 11 of 12 IDRs were on the
dusk-side despite approximately equal residence time in both the pre- and
post-midnight sectors (56.5% dusk vs 43.5% dawn). MMS could identify signatures
of 4 quadrants of the Hall B-structure in 3 events and 3 quadrants in 7 of the
remaining 12 confirmed IDRs identified. The events we report commonly display
Vx reversals greater than 400 km/s in magnitude, normal magnetic field
reversals often >10 nT in magnitude, maximum DC |E| which are often well in
excess of the threshold for stage 3. Our results are then compared with the set
of IDRs identified by visual examination from Cluster in the years 2000-2005.