AbstractMarine aggregates play a critical role in the biological pump, both as a dominant component of carbon flux and as hotspots for organic matter remineralization by microbial communities. In this study, we used laboratory experiments to investigate how aggregate thin layers, such as those commonly found in the coastal ocean, affect the distribution of bacteria and their activity. Diatom aggregates were added to a stratified water column, forming layers within which both microbial concentration and extracellular enzyme activity were substantially increased relative to background levels. Importantly, this enhancement of bacterial concentration and activity persisted long after the marine snow aggregates settled through the tank—that is, 10 times longer than the duration of the aggregate layer at the density interface. Thus, these small‐scale microbial interactions within aggregate layers leave behind considerable “carbon processing footprints” in the water column that may affect biogeochemical cycles at much larger temporal and spatial scales.