In cosmic ray air showers, the muon lateral separation from the center of the
shower is a measure of the transverse momentum that the muon parent acquired in
the cosmic ray interaction. IceCube has observed cosmic ray interactions that
produce muons laterally separated by up to 400 m from the shower core, a factor
of 6 larger distance than previous measurements. These muons originate in high
pT (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy
secondary interactions. The separation distribution shows a transition to a
power law at large values, indicating the presence of a hard pT component that
can be described by perturbative quantum chromodynamics. However, the rates and
the zenith angle distributions of these events are not well reproduced with the
cosmic ray models tested here, even those that include charm interactions. This
discrepancy may be explained by a larger fraction of kaons and charmed
particles than is currently incorporated in the simulations.