This paper proposes a frequency/time hybrid integral-equation method for the
time dependent wave equation in two and three-dimensional spatial domains.
Relying on Fourier Transformation in time, the method utilizes a fixed
(time-independent) number of frequency-domain integral-equation solutions to
evaluate, with superalgebraically-small errors, time domain solutions for
arbitrarily long times. The approach relies on two main elements, namely, 1) A
smooth time-windowing methodology that enables accurate band-limited
representations for arbitrarily-long time signals, and 2) A novel Fourier
transform approach which, in a time-parallel manner and without causing
spurious periodicity effects, delivers numerically dispersionless
spectrally-accurate solutions. A similar hybrid technique can be obtained on
the basis of Laplace transforms instead of Fourier transforms, but we do not
consider the Laplace-based method in the present contribution. The algorithm
can handle dispersive media, it can tackle complex physical structures, it
enables parallelization in time in a straightforward manner, and it allows for
time leaping---that is, solution sampling at any given time $T$ at
$\mathcal{O}(1)$-bounded sampling cost, for arbitrarily large values of $T$,
and without requirement of evaluation of the solution at intermediate times.
The proposed frequency-time hybridization strategy, which generalizes to any
linear partial differential equation in the time domain for which
frequency-domain solutions can be obtained (including e.g. the time-domain
Maxwell equations), and which is applicable in a wide range of scientific and
engineering contexts, provides significant advantages over other available
alternatives such as volumetric discretization, time-domain integral equations,
and convolution-quadrature approaches.