MMS Observations of Beta-dependent Constraints on Ion Temperature Anisotropy in Earth's Magnetosheath

Academic Article

Abstract

  • Protons (ionized hydrogen) in the solar wind frequently exhibit distinct temperatures ($T_{\perp p}$ and $T_{\parallel p}$) perpendicular and parallel to the plasma's background magnetic-field. Numerous prior studies of the interplanetary solar-wind have shown that, as plasma beta ($\beta_{\parallel p}$) increases, a narrower range of temperature-anisotropy ($R_p\equiv T_{\perp p}\,/\,T_{\parallel p}$) values is observed. Conventionally, this effect has been ascribed to the actions of kinetic microinstabilities. This study is the first to use data from the Magnetospheric Multiscale Mission (MMS) to explore such $\beta_{\parallel p}$-dependent limits on $R_p$ in Earth's magnetosheath. The distribution of these data across the $(\beta_{\parallel p},R_p)$-plane reveals limits on both $R_p>1$ and $R_p<1$. Linear Vlasov theory is used to compute contours of constant growth-rate for the ion-cyclotron, mirror, parallel-firehose, and oblique-firehose instabilities. These instability thresholds closely align with the contours of the data distribution, which suggests a strong association of instabilities with extremes of ion temperature anisotropy in the magnetosheath. The potential for instabilities to regulate temperature anisotropy is discussed.
  • Authors

  • Maruca, Bennett A
  • Chasapis, A
  • Gary, SP
  • Bandyopadhyay, R
  • Chhiber, R
  • Parashar, TN
  • Matthaeus, WH
  • Shay, MA
  • Burch, JL
  • Moore, TE
  • Pollock, CJ
  • Giles, BJ
  • Paterson, WR
  • Dorelli, J
  • Gershman, DJ
  • Torbert, Roy
  • Russell, CT
  • Strangeway, RJ
  • Status

    Publication Date

  • October 10, 2018
  • Has Subject Area

    Published In

    Keywords

  • instabilities
  • plasmas
  • solar wind
  • turbulence
  • Digital Object Identifier (doi)

    Start Page

  • 25
  • End Page

  • 25
  • Volume

  • 866
  • Issue

  • 1