Abstract. Summertime drawdown of dissolved inorganic carbon in the absence of measurable nutrients from the mixed layer and subsurface negative preformed nitrate (preNO3) anomalies observed for the ocean's subtropical gyres are two biogeochemical phenomena that have thus far eluded complete description. Many processes are thought to contribute including biological nitrogen fixation, lateral nutrient transport, carbon overconsumption or non-Redfield C : N : P organic matter cycling, heterotrophic nutrient uptake, and the actions of vertically migrating phytoplankton. Here we investigate the seasonal formation rates and potential contributing mechanisms for negative preformed nitrate anomalies (oxygen consumption without stoichiometric nitrate release) in the subsurface and positive preformed nitrate anomalies (oxygen production without stoichiometric nitrate drawdown) in the euphotic zone at the subtropical ocean time series stations ALOHA in the North Pacific and BATS in the North Atlantic. Non-Redfield −O2 : N stoichiometry for dissolved organic matter (DOM) remineralization is found to account for up to ~ 15 mmol N m−2 yr−1 of negative preNO3 anomaly formation at both stations. Residual negative preNO3 anomalies in excess of that which can be accounted for by non-Redfield DOM cycling are found to accumulate at a rate of ~ 32–46 mmol N m−2 yr−1 at station ALOHA and ~ 46–87 mmol N m−2 yr−1 at the BATS station. These negative anomaly formation rates are in approximate balance with positive preNO3 anomaly formation rates from the euphotic zone located immediately above the nutricline in the water column. Cycling of transparent exopolymer particles (TEP) and heterotrophic nitrate uptake can contribute to the formation of these preNO3 anomalies, however a significant fraction, estimated at ~ 50–95 %, is unexplained by the sum of these processes. Vertically migrating phytoplankton possess the necessary nutrient acquisition strategy and biogeochemical signature to quantitatively explain both the residual negative and positive preNO3 anomalies as well as the mixed layer dissolved inorganic carbon drawdown at stations ALOHA and BATS. TEP production by the model Rhizosolenia mat system could provide accelerated vertical transport of TEP as well as link the three processes together. Phytoplankton vertical migrators, although rare and easily overlooked, may play a large role in subtropical ocean nutrient cycling and the biological pump.