Using a Similarity Matrix Approach to Evaluate the Accuracy of Rescaled Maps

Academic Article

Abstract

  • Rescaled maps have been extensively utilized to provide data at the appropriate spatial resolution for use in various Earth science models. However, a simple and easy way to evaluate these rescaled maps has not been developed. We propose a similarity matrix approach using a contingency table to compute three measures: overall similarity (OS), omission error (OE), and commission error (CE) to evaluate the rescaled maps. The Majority Rule Based aggregation (MRB) method was employed to produce the upscaled maps to demonstrate this approach. In addition, previously created, coarser resolution land cover maps from other research projects were also available for comparison. The question of which is better, a map initially produced at coarse resolution or a fine resolution map rescaled to a coarse resolution, has not been quantitatively investigated. To address these issues, we selected study sites at three different extent levels. First, we selected twelve regions covering the continental USA, then we selected nine states (from the whole continental USA), and finally we selected nine Agriculture Statistical Districts (ASDs) (from within the nine selected states) as study sites. Crop/non-crop maps derived from the USDA Crop Data Layer (CDL) at 30 m as base maps were used for the upscaling and existing maps at 250 m and 1 km were utilized for the comparison. The results showed that a similarity matrix can effectively provide the map user with the information needed to assess the rescaling. Additionally, the upscaled maps can provide higher accuracy and better represent landscape pattern compared to the existing coarser maps. Therefore, we strongly recommend that an evaluation of the upscaled map and the existing coarser resolution map using a similarity matrix should be conducted before deciding which dataset to use for the modelling. Overall, extending our understanding on how to perform an evaluation of the rescaled map and investigation of the applicability of the rescaled map compared to the existing land cover map is necessary for users to most effectively use these data in Earth science models.
  • Authors

  • Sun, Peijun
  • Congalton, Russell
  • Status

    Publication Date

  • March 2018
  • Published In

  • Remote Sensing  Journal
  • Keywords

  • accuracy assessment
  • heterogeneity
  • land cover map
  • rescaling technique
  • similarity matrix
  • upscaled map
  • Digital Object Identifier (doi)

    Start Page

  • 487
  • End Page

  • 487
  • Volume

  • 10
  • Issue

  • 3