Inclined porous medium convection at large Rayleigh number

Academic Article


  • High-Rayleigh-number ($Ra$) convection in an inclined two-dimensional porous layer is investigated using direct numerical simulations (DNS) and stability and variational upper-bound analyses. When the inclination angle $\unicode[STIX]{x1D719}$ of the layer satisfies $0^{\circ }<\unicode[STIX]{x1D719}\lesssim 25^{\circ }$, DNS confirm that the flow exhibits a three-region wall-normal asymptotic structure in accord with the strictly horizontal ($\unicode[STIX]{x1D719}=0^{\circ }$) case, except that as $\unicode[STIX]{x1D719}$ is increased the time-mean spacing between neighbouring interior plumes also increases substantially. Both DNS and upper-bound analysis indicate that the heat transport enhancement factor (i.e. the Nusselt number) $Nu\sim CRa$ with a $\unicode[STIX]{x1D719}$-dependent prefactor $C$. When $\unicode[STIX]{x1D719}>\unicode[STIX]{x1D719}_{t}$, however, where $30^{\circ }<\unicode[STIX]{x1D719}_{t}<32^{\circ }$ independently of $Ra$, the columnar flow structure is completely broken down: the flow transitions to a large-scale travelling-wave convective roll state, and the heat transport is significantly reduced. To better understand the physics of inclined porous medium convection at large $Ra$ and modest inclination angles, a spatial Floquet analysis is performed, yielding predictions of the linear stability of numerically computed, fully nonlinear steady convective states. The results show that there exist two types of instability when $\unicode[STIX]{x1D719}\neq 0^{\circ }$: a bulk-mode instability and a wall-mode instability, consistent with previous findings for $\unicode[STIX]{x1D719}=0^{\circ }$ (Wen et al.J. Fluid Mech., vol. 772, 2015, pp. 197–224). The background flow induced by the inclination of the layer intensifies the bulk-mode instability during its subsequent nonlinear evolution, thereby favouring increased spacing between the interior plumes relative to that observed in convection in a horizontal porous layer.
  • Authors

  • Wen, Baole
  • Chini, Gregory
  • Status

    Publication Date

  • February 25, 2018
  • Has Subject Area

    Published In


  • convection in porous media
  • nonlinear instability
  • variational methods
  • Digital Object Identifier (doi)

    Start Page

  • 670
  • End Page

  • 702
  • Volume

  • 837