Many of the most important astrophysical tests of Lorentz symmetry also
assume that energy-momentum of the observed particles is exactly conserved. In
the causal set approach to quantum gravity a particular kind of Lorentz
symmetry holds but energy-momentum conservation may be violated. We show that
incorrectly assuming exact conservation can give rise to a spurious signal of
Lorentz symmetry violation for a causal set. However, the size of this spurious
signal is much smaller than can be currently detected and hence astrophysical
Lorentz symmetry tests as currently performed are safe from causal set induced
violations of energy-momentum conservation.