We report measurements of photon and neutron radiation levels observed while
transmitting a 0.43 MW electron beam through millimeter-sized apertures and
during beam-off, but accelerating gradient RF-on, operation. These measurements
were conducted at the Free-Electron Laser (FEL) facility of the Jefferson
National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an
energy-recovery linear accelerator. The beam was directed successively through
6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a
maximum current of 4.3 mA (430 kW beam power). This study was conducted to
characterize radiation levels for experiments that need to operate in this
environment, such as the proposed DarkLight Experiment. We find that sustained
transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is
feasible with manageable beam-related backgrounds. We also find that during
beam-off, RF-on operation, multipactoring inside the niobium cavities of the
accelerator cryomodules is the primary source of ambient radiation when the
machine is tuned for 130 MeV operation.