Patent Landscape of Influenza A Virus Prophylactic Vaccines and Related Technologies

Book

Abstract

  • Executive Summary This report focuses on patent landscape analysis of technologies related to prophylactic vaccines targeting pandemic strains of influenza. These technologies include methods of formulating vaccine, methods of producing of viruses or viral subunits, the composition of complete vaccines, and other technologies that have the potential to aid in a global response to this pathogen. The purpose of this patent landscape study was to search, identify, and categorize patent documents that are relevant to the development of vaccines that can efficiently promote the development of protective immunity against pandemic influenza virus strains. The search strategy used keywords which the team felt would be general enough to capture (or “recall”) the majority of patent documents which were directed toward vaccines against influenza A virus. After extensive searching of patent literature databases, approximately 33,500 publications were identified and collapsed to about 3,800 INPADOC families. Relevant documents, almost half of the total, were then identified and sorted into the major categories of vaccine compositions (about 570 families), technologies which support the development of vaccines (about 750 families), and general platform technologies that could be useful but are not specific to the problems presented by pandemic influenza strains (about 560 families). The first two categories, vaccines and supporting technologies, were further divided into particular subcategories to allow an interested reader to rapidly select documents relevant to the particular technology in which he or she is focused. This sorting process increased the precision of the result set. The two major categories (vaccines and supporting technologies) were subjected to a range of analytics in order to extract as much information as possible from the dataset. First, patent landscape maps were generated to assess the accuracy of the sorting procedure and to reveal the relationships between the various technologies that are involved in creating an effective vaccine. Then, filings trends are analyzed for the datasets. The country of origin for the technologies was determined, and the range of distribution to other jurisdictions was assessed. Filings were also analyzed by year, by assignee, and by inventor. Finally, the various patent classification systems were mapped to find which particular classes tend to hold influenza vaccine-related technologies. Besides the keywords developed during the searches and the landscape map generation, the classifications represent an alternate way for further researchers to identify emerging influenza technologies. The analysis included creation of a map of keywords, as shown above, describing the relationship of the various technologies involved in the development of prophylactic influenza A vaccines. The map has regions corresponding to live attenuated virus vaccines, subunit vaccines composed of split viruses or isolated viral polypeptides, and plasmids used in DNA vaccines. Important technologies listed on the map include the use of reverse genetics to create reassortant viruses, the growth of viruses in modified cell lines as opposed to the traditional methods using eggs, the production of recombinant viral antigens in various host cells, and the use of genetically-modified plants to produce virus-like particles. Another major finding was that the number of patent documents related to influenza being published has been steadily increasing in the last decade, as shown in the figure below. Until the mid-1990s, there were only a few influenza patent documents being published each year. The number of publications increased noticeably when TRIPS took effect, resulting in publication of patent applications. However, since 2006 the number of vaccine publications has exploded. In each of 2011 and 2012, about 100 references disclosing influenza vaccine technologies were published. Thus, interest in developing new and more efficacious influenza vaccines has been growing in recent years. This interest is probably being driven by recent influenza outbreaks, such as the H5N1 (bird flu) epidemic that began in the late 1990s and the 2009 H1N1 (swine flu) pandemic. The origins of the vaccine-related inventions were also analyzed. The team determined the country in which the priority application was filed, which was taken as an indication of the country where the invention was made or where the inventors intended to practice the invention. By far, most of the relevant families originated with patent applications filed in the United States. Other prominent priority countries were the China and United Kingdom, followed by Japan, Russia, and South Korea. France was a significant priority country only for supporting technologies, not for vaccines. Top assignees for these families were mostly large pharmaceutical companies, with the majority of patent families coming from Novartis, followed by GlaxoSmithKline, Pfizer, U.S. Merck (Merck, Sharpe, & Dohme), Sanofi, and AstraZeneca. Governmental and nonprofit institutes in China, Japan, Russia, South Korea and the United States also are contributing heavily to influenza vaccine research. Lastly, the jurisdictions were inventors have sought protection for their vaccine technologies were determined, and the number of patent families filing in a given country is plotted on the world map shown on page seven. The United States, Canada, Australia, Japan, South Korea and China have the highest level of filings, followed by Germany, Brazil, India, Mexico and New Zealand. However, although there are a significant number of filings in Brazil, the remainder of Central and South America has only sparse filings. Of concern, with the exception of South Africa, few other African nations have a significant number of filings. In summary, the goal of this report is to provide a knowledge resource for making informed policy decisions and for creating strategic plans concerning the assembly of efficacious vaccines against a rapidly-spreading, highly virulent influenza strain. The team has defined the current state of the art of technologies involved in the manufacture of influenza vaccines, and the important assignees, inventors, and countries have been identified. This document should reveal both the strengths and weaknesses of the current level of preparedness for responding to an emerging pandemic influenza strain. The effects of H5N1 and H1N1 epidemics have been felt across the globe in the last decade, and future epidemics are very probable in the near future, so preparations are necessary to meet this global health threat.
  • Authors

  • Cavicchi, Jon R
  • Kowalski, Stanley
  • Pflugh, David L
  • Barton, Jeremy
  • Janovetz, Jeffrey
  • Schroeder, John
  • Publication Date

  • 2012