The spin of black holes in black hole-neutron star (BHNS) binaries can have a
strong influence on the merger dynamics and the postmerger state; a wide
variety of spin magnitudes and orientations are expected to occur in nature. In
this paper, we report the first simulations in full general relativity of BHNS
mergers with misaligned black hole spin. We vary the spin magnitude from a/m=0
to a/m=0.9 for aligned cases, and we vary the misalignment angle from 0 to 80
degrees for a/m=0.5. We restrict our study to 3:1 mass ratio systems and use a
simple Gamma-law equation of state. We find that the misalignment angle has a
strong effect on the mass of the postmerger accretion disk, but only for angles
greater than ~ 40 degrees. Although the disk mass varies significantly with
spin magnitude and misalignment angle, we find that all disks have very similar
lifetimes ~ 100ms. Their thermal and rotational profiles are also very similar.
For a misaligned merger, the disk is tilted with respect to the final black
hole's spin axis. This will cause the disk to precess, but on a timescale
longer than the accretion time. In all cases, we find promising setups for
gamma-ray burst production: the disks are hot, thick, and hyperaccreting, and a
baryon-clear region exists above the black hole.