We present final results on the photon electroproduction
($\vec{e}p\rightarrow ep\gamma$) cross section in the deeply virtual Compton
scattering (DVCS) regime and the valence quark region from Jefferson Lab
experiment E00-110. Results from an analysis of a subset of these data were
published before, but the analysis has been improved which is described here at
length, together with details on the experimental setup. Furthermore,
additional data have been analyzed resulting in photon electroproduction cross
sections at new kinematic settings, for a total of 588 experimental bins.
Results of the $Q^2$- and $x_B$-dependences of both the helicity-dependent and
helicity-independent cross sections are discussed. The $Q^2$-dependence
illustrates the dominance of the twist-2 handbag amplitude in the kinematics of
the experiment, as previously noted. Thanks to the excellent accuracy of this
high luminosity experiment, it becomes clear that the unpolarized cross section
shows a significant deviation from the Bethe-Heitler process in our kinematics,
compatible with a large contribution from the leading twist-2 DVCS$^2$ term to
the photon electroproduction cross section. The necessity to include
higher-twist corrections in order to fully reproduce the shape of the data is
also discussed. The DVCS cross sections in this paper represent the final set
of experimental results from E00-110, superseding the previous publication.