# Asymptotic and spectral analysis of non-selfadjoint operators generated by a filament model with a critical value of a boundary parameter

### Abstract

• AbstractWe consider a class of non‐selfadjoint operators generated by the equation and the boundary conditions, which govern small vibrations of an ideal filament with non‐conservative boundary conditions at one end and a heavy load at the other end. The filament has a non‐constant density and is subject to a viscous damping with a non‐constant damping coefficient. The boundary conditions contain two arbitrary complex parameters. In our previous paper (Mathematical Methods in the Applied Sciences 2001; 24(15) : 1139–1169), we have derived the asymptotic approximations for the eigenvalues and eigenfunctions of the aforementioned non‐selfadjoint operators when the boundary parameters were arbitrary complex numbers except for one specific value of one of the parameters. We call this value the critical value of the boundary parameter. It has been shown (in Mathematical Methods in the Applied Sciences 2001; 24(15) : 1139–1169) that the entire set of the eigenvalues is located in a strip parallel to the real axis. The latter property is crucial for the proof of the fact that the set of the root vectors of the operator forms a Riesz basis in the state space of the system. In the present paper, we derive the asymptotics of the spectrum exactly in the case of the critical value of the boundary parameter. We show that in this case, the asymptotics of the eigenvalues is totally different, i.e. both the imaginary and real parts of eigenvalues tend to ∞as the number of an eigenvalue increases. We will show in our next paper, that as an indirect consequence of such a behaviour of the eigenvalues, the set of the root vectors of the corresponding operator is not uniformly minimal (let alone the Riesz basis property). Copyright © 2003 John Wiley & Sons, Ltd.

### Publication Date

• February 2003

### Keywords

• critical value of boundary parameter
• ideal filament
• integral equation

• 213

• 245

• 26

• 3