We present results from a search for gravitational-wave bursts in the data
collected by the LIGO and Virgo detectors between July 7, 2009 and October 20,
2010: data are analyzed when at least two of the three LIGO-Virgo detectors are
in coincident operation, with a total observation time of 207 days. The
analysis searches for transients of duration < 1 s over the frequency band
64-5000 Hz, without other assumptions on the signal waveform, polarization,
direction or occurrence time. All identified events are consistent with the
expected accidental background. We set frequentist upper limits on the rate of
gravitational-wave bursts by combining this search with the previous LIGO-Virgo
search on the data collected between November 2005 and October 2007. The upper
limit on the rate of strong gravitational-wave bursts at the Earth is 1.3
events per year at 90% confidence. We also present upper limits on source rate
density per year and Mpc^3 for sample populations of standard-candle sources.
As in the previous joint run, typical sensitivities of the search in terms of
the root-sum-squared strain amplitude for these waveforms lie in the range 5
10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs
entails the most sensitive all-sky search for generic gravitational-wave bursts
and synthesizes the results achieved by the initial generation of
interferometric detectors.