HOCHSCHILD COHOMOLOGY OF TYPE Pi(1) VON NEUMANN ALGEBRAS WITH PROPERTY Gamma

Academic Article

Abstract

  • In this paper, Property $\Gamma$ for a type II$_{1}$ von Neumann algebra is introduced as a generalization of Murray and von Neumann's Property $\Gamma$ for a type II$_{1}$ factor. The main result of this paper is that if a type II$_{1}$ von Neumann algebra $\mathcal{M}$ with separable predual has Property $\Gamma$, then the continuous Hochschild cohomology group $H^{k}(\mathcal{M}, \mathcal{M})$ vanishes for every $k \geq 2$. This gives a generalization of an earlier result due to E. Christensen, F. Pop, A.M. Sinclair and R.R. Smith.
  • Authors

  • Qian, Wenhua
  • Shen, Junhao
  • Status

    Publication Date

  • September 2015
  • Has Subject Area

    Published In

    Keywords

  • Hochschild cohomology
  • property Gamma
  • von Neumann algebra
  • Digital Object Identifier (doi)

    Start Page

  • 507
  • End Page

  • 543
  • Volume

  • 9
  • Issue

  • 3