Maximal injective subalgebras of tensor products of free group factors

Academic Article

Abstract

  • In this article, we proved the following results. Let $L(F(n_i))$ be the free group factor on $n_i$ generators and $\lambda (g_{i})$ be one of standard generators of $L(F(n_i))$ for $1\le i\le N$. Let $\A_i$ be the abelian von Neumann subalgebra of $L(F(n_i))$ generated by $\lambda(g_{i})$. Then the abelian von Neumann subalgebra $\otimes_{i=1}^N\A_i$ is a maximal injective von Neumann subalgebra of $\otimes_{i=1}^N L(F(n_i))$. When $N$ is equal to infinity, we obtained McDuff factors that contain maximal injective abelian von Neumann subalgebras.
  • Authors

    Status

    Publication Date

  • November 15, 2006
  • Has Subject Area

    Published In

    Keywords

  • McDuff factors
  • free group factors
  • maximal injective von Neumann algebra
  • strongly stable II1 factors
  • Digital Object Identifier (doi)

    Start Page

  • 334
  • End Page

  • 348
  • Volume

  • 240
  • Issue

  • 2