In this article, we proved the following results. Let $L(F(n_i))$ be the free
group factor on $n_i$ generators and $\lambda (g_{i})$ be one of standard
generators of $L(F(n_i))$ for $1\le i\le N$. Let $\A_i$ be the abelian von
Neumann subalgebra of $L(F(n_i))$ generated by $\lambda(g_{i})$. Then the
abelian von Neumann subalgebra $\otimes_{i=1}^N\A_i$ is a maximal injective von
Neumann subalgebra of $\otimes_{i=1}^N L(F(n_i))$. When $N$ is equal to
infinity, we obtained McDuff factors that contain maximal injective abelian von
Neumann subalgebras.