We present a study of coronal mass ejections (CMEs) which impacted one of the
STEREO spacecraft between January 2008 and early 2010. We focus our study on 20
CMEs which were observed remotely by the Heliospheric Imagers (HIs) onboard the
other STEREO spacecraft up to large heliocentric distances. We compare the
predictions of the Fixed-Phi and Harmonic Mean (HM) fitting methods, which only
differ by the assumed geometry of the CME. It is possible to use these
techniques to determine from remote-sensing observations the CME direction of
propagation, arrival time and final speed which are compared to in situ
measurements. We find evidence that for large viewing angles, the HM fitting
method predicts the CME direction better. However, this may be due to the fact
that only wide CMEs can be successfully observed when the CME propagates more
than 100 deg from the observing spacecraft. Overall eight CMEs, originating
from behind the limb as seen by one of the STEREO spacecraft can be tracked and
their arrival time at the other STEREO spacecraft can be successfully
predicted. This includes CMEs, such as the events on 4 December 2009 and 9
April 2010, which were viewed 130 deg away from their direction of propagation.
Therefore, we predict that some Earth-directed CMEs will be observed by the HIs
until early 2013, when the separation between Earth and one of the STEREO
spacecraft will be similar to the separation of the two STEREO spacecraft in
2009--2010.